RSS 2.0
Sign In
# Sunday, February 7, 2010


public class N
  public readonly N next;

What needs to be done to construct a ring of N: n1 refers to n2, n2 to n3, ... nk to n1? Is it possible?

Sunday, February 7, 2010 7:57:08 AM UTC  #    Comments [2] -
Thinking aloud | Tips and tricks
# Saturday, February 6, 2010

To end with immutable trees, at least for now, we've implemented IDictionary<K, V>. It's named Map<K, V>. Functionally it looks very like SortedDictionary<K, V>. there are some differences, however:

  • Map in contrast to SortedDictionary is very cheap on copy.
  • Bacause Map is based on AVL tree, which is more rigorly balanced than RB tree, so it's a little bit faster asymptotically for lookup than SortedDictionary, and a little bit slower on modification.
  • Due to the storage structure: node + navigator, Map consumes less memory than SortedDictionary, and is probably cheaper for GC (simple garbage graphs).
  • As AVL tree stores left and right subtree sizes, in contrast to a "color" in RB tree, we able to index data in two ways: with integer index, and with key value.

Sources are:


It was impossible to withstand temptation to commit some primitive performance comparision. Map outperforms SortedDictionary both in population and in access. this does not aggree with pure algorithm's theory, but there might be other unaccounted factors: memory consumption, quality of implementation, and so on.

Program.cs is updated with measurements.

Update 2:

More occurate tests show that for some key types Map's faster, for others SortedDictionary's faster. Usually Map's slower during population (mutable AVL tree navigator may fix this). the odd thing is that Map<string, int> is faster than SortedDictionary<string, int> both for allocaction and for access. See excel report.

Update 3:

Interesing observation. The following table shows maximal and average tree heights for different node sizes in AVL and RB trees after a random population:

Size Max Avg Max Avg
10 4 2.90 5 3.00
50 7 4.94 8 4.94
100 8 5.84 9 5.86
500 11 8.14 14 8.39
1000 12 9.14 16 9.38
5000 15 11.51 18 11.47
10000 16 12.53 20 12.47
50000 19 14.89 23 14.72
100000 20 15.90 25 15.72
500000 25 18.26 28 18.27
1000000 25 19.28 30 19.27

Here, according with theory, the height of AVL tree is shorter than the height of RB tree. But what is most interesting is that the depth of an "average node". This value describes a number of steps required to find a random key. RB tree is very close and often is better than AVL in this regard.

Saturday, February 6, 2010 6:31:13 PM UTC  #    Comments [0] -
Thinking aloud | Tips and tricks
# Wednesday, February 3, 2010

It was obvious as hell from day one of generics that there will appear obscure long names when you will start to parametrize your types. It was the easiest thing in the world to take care of this in advanvce. Alas, C# inherits C++'s bad practices.

Read Associative containers in a functional languages and Program.cs to see what we're talking about.

Briefly, there is a pair (string, int), which in C# should be declared as:

System.Collections.Generic.KeyValuePair<string, int>

Obviously we would like to write it in a short way. These are our attempts, which fail:

1. Introduce generic alias Pair<K, V>:

using System.Collections.Generic;
using Pair<K, V> = KeyValuePair<K, V>;

2. Introduce type alias for a generic type with specific types.

using System.Collections.Generic;
using Pair = KeyValuePair<string, int>;

And this is only one that works:

using Pair = System.Collections.Generic.KeyValuePair<string, int>;

Do you think is it bearable? Well, consider the following:

  • There is a generic type ValueNode<T>, where T should be Pair.
  • There is a generic type TreeNavigator<N>, where N is should be ValueNode<Pair>.

The declaration looks like this:

using Pair = System.Collections.Generic.KeyValuePair<string, int>;
using Node = NesterovskyBros.Collections.AVL.ValueNode<
  System.Collections.Generic.KeyValuePair<string, int>>;
using Navigator = NesterovskyBros.Collections.AVL.TreeNavigator<
    System.Collections.Generic.KeyValuePair<string, int>>>;

Do you still think is it acceptable?

P.S. Legacy thinking led C#'s and java's designers to the use of word "new" for the object construction. It is not required at all. Consider new Pair("A", 1) vs Pair("A", 1). C++ prefers second form. C# and java always use the first one.

Wednesday, February 3, 2010 11:59:19 AM UTC  #    Comments [1] -
Thinking aloud | Tips and tricks
# Wednesday, January 27, 2010

Continuing with the post "Ongoing xslt/xquery spec update" we would like to articulate what options regarding associative containers do we have in a functional languages (e.g. xslt, xquery), assuming that variables are immutable and implementation is efficient (in some sense).

There are three common implementation techniques:

  • store data (keys, value pairs) in sorted array, and use binary search to access values by a key;
  • store data in a hash map;
  • store data in a binary tree (usually RB or AVL trees).

Implementation choice considerably depends on operations, which are taken over the container. Usually these are:

  1. construction;
  2. value lookup by key;
  3. key enumeration (ordered or not);
  4. container modification (add and remove data into the container);
  5. access elements by index;

Note that modification in a functional programming means a creation of a new container, so here is a division:

  1. If container's use pattern does not include modification, then probably the simplest solution is to build it as an ordered sequence of pairs, and use binary search to access the data. Alternatively, one could implement associative container as a hash map.
  2. If modification is essential then neither ordered sequence of pairs, hash map nor classical tree implementation can be used, as they are either too slow or too greedy for a memory, either during modification or during access.

On the other hand to deal with container's modifications one can build an implementation, which uses "top-down" RB or AVL trees. To see the difference consider a classical tree structure and its functional variant:

Classical Functional
Node structure: node
  other data
  other data
Node reference: node itself node path from a root of a tree
Modification: either mutable or requires a completely new tree O(LnN) nodes are created

Here we observe that:

  1. one can implement efficient map (lookup time no worse than O(LnN)) with no modification support, using ordered array;
  2. one can implement efficient map with support of modification, using immutable binary tree;
  3. one can implement all these algorithms purely in xslt and xquery (provided that inline functions are supported);
  4. any such imlementation will lose against the same implementation written in C++, C#, java;
  5. the best implementation would probably start from sorted array and will switch to binary tree after some size threshold.

Here we provide a C# implementation of a functional AVL tree, which also supports element indexing:

Our intention was to show that the usual algorithms for associative containers apply in functional programming; thus a feature complete functional language must support associative containers to make development more conscious, and to free a developer from inventing basic things existing already for almost a half of century.

Wednesday, January 27, 2010 7:00:55 AM UTC  #    Comments [0] -
Thinking aloud | Tips and tricks | xslt
# Tuesday, January 19, 2010

Several years ago we have started a new project. We do not like neither hate any particular language, thus the decision what language to use was pragmatical: xslt 2.0 fitted perfectly.

At present it's a solid volume of xslt code. It exhibits all the virtues of any other good project in other language: clean design, modularity, documentation, sophisticationless (good code should not be clever).

Runtime profile of the project is that it deals with xml documents with sizes from a few dozens of bytes to several megabytes, and with xml schemas from simple ones like a tabular data, and to rich like xhtml and untyped. Pipeline of stylesheets processes gigabytes of data stored in the database and in files.

All the bragging above is needed here to introduce the context for the following couple of lines.

The diversity of load conditions and a big code base, exposed xslt engine of choice to a good proof test. The victim is Saxon. In the course of project we have found and reported many bugs. Some of them are nasty and important, and others are bearable. To Michael Kay's credit (he's owner of Saxon) all bugs are being fixed promtly (see the last one).

Such project helps us to understand a weak sides of xslt (it seems sometimes they, in WG, lack such experience, which should lead them through).

Well, it has happened so that we're helping to Saxon project. Unintentionally, however! :-)

P.S. About language preferences.

Nowdays we're polishing a COBOL generation. To this end we have familiarized ourselves with this language. That's the beatiful language. Its straightforwardness helps to see the evolution of computer languages and to understand what and why today's languages try to timidly hide.

Tuesday, January 19, 2010 7:56:04 PM UTC  #    Comments [0] -
Thinking aloud | xslt
# Friday, January 15, 2010

We have updated There are many fixes in cobolxom (well, cobolxom is new, and probably there will be some more bugs). Also we have included Xml Object Model for the SQL, which in fact has appeared along with jxom.

SQL xom supports basic sql syntax including common table expressions, and two dialects for DB2 and Oracle.

Friday, January 15, 2010 4:20:41 PM UTC  #    Comments [2] -
# Wednesday, January 6, 2010

Recently W3C has published new drafts for xquery 1.1 and for xpath 2.1. We have noticed that committee has decided to introduce inline functions both for the xquery and for the xpath.

That's a really good news! This way xquery, xpath and xslt are being approached the Object Oriented Programming the way of javascript with its inline functions.

Now we shall be able to implement tuples (a sequence of items wrapped into single item), object with named properties, trees (e.g. RB Tree), associative containers (tree maps and hash maps, sets).

Surely, all this will be in the spirit of functional programming.

The only thing we regret about is that the WG did not include built-in implementations for trees and associative containers, as we don't believe that one can create an efficient implementation of these abstractions neither in xquery nor in xslt (asymptotically results will be good, but coefficients will be painful).

See also: Tuple and maps

Wednesday, January 6, 2010 1:13:16 PM UTC  #    Comments [0] -
# Monday, January 4, 2010

Not sure how things work for others but for us it turns out that Saxon 9.2 introduces new bugs, works slower and eats much more memory than its ancestor v9.1.

See Memory problem with V9.2.

We hope all this will be fixed soon.

Update: By the way, Saxon 9.2 (at the moment 2009-01-04) does not like (despises in fact) small documents and especially text nodes in those documents. It loves huge in memory documents, however. :-)

Update 2009-01-05: case's closed, fix's commited into svn.

Monday, January 4, 2010 1:39:47 PM UTC  #    Comments [0] -
# Friday, January 1, 2010

Today, I've tried to upgrade our projects to Saxon 9.2. We have a rather big set of stylesheets grinding gigabytes of information. It's obvious that we expected at least the same performance from the new version.

But to my puzzlement a pipeline of transformations failed almost immediately with en error message:

XPTY0018: Cannot mix nodes and atomic values in the result of a path expression

We do agree with this statement in general, but what it had in common with our stylesheets? And how everything was working in 9.1?

To find the root of the problem I've created a minimal problem reproduction:

<xsl:stylesheet version="2.0"
  exclude-result-prefixes="xs t">

  <!-- Entry point. -->
  <xsl:template match="/">
    <xsl:variable name="p" as="element()">
      <p l="1"/>

    <o l="{$p/t:d(.)}"/>

  <xsl:function name="t:d" as="item()*">
    <xsl:param name="p" as="element()"/>

    <xsl:apply-templates mode="p" select="$p"/>

  <xsl:template match="*" mode="p">
    <xsl:sequence select="concat('0', @l)"/>


Really simple, isn't it? The problem is in a new optimization of concat() function, introduced in version 9.2. It tries to eliminate string concatenation, and in certain cases emits its arguments directly into the output as text nodes, separating whole output with some stopper strings. The only problem is that no such optimization is allowed in this particular case (which is rather common, and surely legal, in our stylesheets); result of <xsl:template match="p" mode="p"> should not be a node, but of type xs:string.

Saxon 9.2 is here already for 3 month, at lest! Thus, how come that such a bug was not discovered earlier?

Update: the fix is commited into the svn on the next day. That's promptly!

Friday, January 1, 2010 10:17:47 PM UTC  #    Comments [0] -
# Sunday, December 27, 2009

We've added a new language to the set of Xml Object Model schemas and stylesheets.

The newcomer is COBOL! No jokes. It's not a whim, really. Believe it or not but COBOL is still alive and we need to generate it (mainly different sorts of proxies).

We've used VS COBOL II grammar Version 1.0.3 as a reference. Implemented grammar is complete but without preprocessor statements. On the other hand it defines COPY and EXEC SQL constructs.

Definitely, it'll take a time for the xml schema and xslt implementation to become mature.

Now language XOM is:

  • jxom - for java;
  • csharpxom - for C#;
  • cobolxom - for COBOL.

Sources can be found at languages-xom.

Sunday, December 27, 2009 5:00:07 PM UTC  #    Comments [0] -
Announce | xslt
# Monday, December 21, 2009


  • an xml defining elements and groups;
  • each element belongs to a group or groups;
  • group may belong to another group.


  • groups, a given element directly or inderectly belongs to;
  • a function checking whether an element belongs to a group.


  <group name="g1">
    <element ref="e1"/>
    <element ref="e2"/>
    <element ref="e3"/>
    <group ref="g2"/>
  <group name="g2">
    <element ref="e5"/>
  <group name="g3">
    <element ref="e1"/>
    <element ref="e4"/>

There are several solutions depending on aggresiveness of optimization. A moderate one is done through the xsl:key. All this reminds recursive common table expressions in SQL.


Monday, December 21, 2009 5:19:32 PM UTC  #    Comments [0] -
# Saturday, December 19, 2009

In spite of the fact that our last projects are being developed in Java, the .NET is definitly our favorite platform.

In a twitter I saw the phrase: "Java the language is a stagnant mess". It's said in favour of C#. It's true that C# significantly affects now even on Java (let's remember generics, jaxb, web services, etc.), but in my opinion, the C# won't be the leading language for worldwide enterprise applications in the nearest future.

One of causes is that the main platform for .NET still is Windows. The situation could be changed by Mono project, but I think there are yet not enough projects on platforms other than Windows.

My guess is confirmed by some of observations that I did as a software engineer of an IT company. Our company performs different software porting projects from legacy programming languages like COBOL, ADSO, Natural etc. into up to date languages like Java, C# etc. It worth to say that clients rarely select to migrate to .NET despite to our advices.

The main reason of such choice, according to most of our clients, is that they want to be platform independent and only Java gives them this choice.

It worth for Microsoft to think about cooperation with Mono in order to make .NET really platform indpendent, otherwise C# will always be a step behind Java despite apparent advantages of C# as a programming language.

Saturday, December 19, 2009 5:08:23 PM UTC  #    Comments [1] -
Thinking aloud
# Friday, December 11, 2009

A client asked us to produce Excel reports in ASP.NET application. They've given an Excel templates, and also defined what they want to show.

What are our options?

  • Work with Office COM API;
  • Use Office Open XML SDK (which is a set of pure .NET API);
  • Try to apply xslt somehow;
  • Macro, other?

For us, biased to xslt, it's hard to make a fair choice. To judge, we've tried formalize client's request and to look into future support.

So, we have defined sql stored procedures to provide the data. This way data can be represented either as ADO.NET DataSet, a set of classes, as xml, or in other reasonable format. We do not predict any considerable problem with data representation if client will decide to modify reports in future.

It's not so easy when we think about Excel generation.

Due to ignorance we've thought that Excel is much like xslt in some regard, and that it's possible to provide a tabular data in some form and create Excel template, which will consume the data to form a final output. To some extent it's possible, indeed, but you should start creating macro or vb scripts to achieve acceptable results.

When we've mentioned macroses to the client, they immediately stated that such a solution won't work due to security reasons.

Comparing COM API and Open XML SDK we can see that both provide almost the same level of service for us, except that the later is much more lighter and supports only Open XML format, and the earlier is a heavy API exposing MS Office and supports earlier versions also.

Both solutions have a considerable drawback: it's not easy to create Excel report in C#, and it will be a pain to support such solution if client will ask, say in half a year, to modify something in Excel template or to create one more report.

Thus we've approached to xslt. There we've found two more directions:

  • generate data for Office Open XML;
  • generate xml in format of MS Office 2003.

It's turned out that it's rather untrivial task to generate data for Open XML, and it's not due to the format, which is not xml at all but a zipped folder containing xmls. The problem is in the complex schemas and in many complex relations between files constituting Open XML document. In contrast, MS Office 2003 format allows us to create a single xml file for the spreadsheet.

Selecting between standard and up to date format, and older proprietary one, the later looks more attractive for the development and support.

At present we're at position to use xslt and to generate files in MS Office 2003 format. Are there better options?

Friday, December 11, 2009 9:28:32 AM UTC  #    Comments [4] -
Tips and tricks | xslt
# Saturday, December 5, 2009

Did you ever hear that double numbers may cause roundings, and that many financial institutions are very sensitive to those roundings?

Sure you did! We're also aware of this kind of problem, and we thought we've taken care of it. But things are not that simple, as you're not always know what an impact the problem can have.

To understand the context it's enough to say that we're converting (using xslt by the way) programs written in a CASE tool called Cool:GEN into java and into C#. Originally, Cool:GEN generated COBOL and C programs as deliverables. Formally, clients compare COBOL results vs java or C# results, and they want them to be as close as possible.

For one particular client it was crucial to have correct results during manipulation with numbers with 20-25 digits in total, and with 10 digits after a decimal point.

Clients are definitely right, and we've introduced generation options to control how to represent numbers in java and C# worlds; either as double or BigDecimal (in java), and decimal (in C#).

That was our first implementation. Reasonable and clean. Was it enough? - Not at all!

Client's reported that java's results (they use java and BigDecimal for every number with decimal point) are too precise, comparing to Mainframe's (MF) COBOL. This rather unusuall complain puzzles a litle, but client's confirmed that they want no more precise results than those MF produces.

The reason of the difference was in that that both C# and especially java may store much more decimal digits than is defined for the particualar result on MF. So, whenever you define a field storing 5 digits after decimal point, you're sure that exactly 5 digits will be stored. This contrasts very much with results we had in java and C#, as both multiplication and division can produce many more digits after the decimal point. The solution was to truncate(!) (not to round) the numbers to the specific precision in property setters.

So, has it resolved the problem? - No, still not!

Client's reported that now results much more better (coincide with MF, in fact) but still there are several instances when they observe differences in 9th and 10th digits after a decimal point, and again java's result are more accurate.

No astonishment this time from us but analisys of the reason of the difference. It's turned out that previous solution is partial. We're doing a final truncation but still there were intermediate results like in a/(b * c), or in a * (b/c).

For the intermediate results MF's COBOL has its, rather untrivial, formulas (and options) per each operation defining the number of digits to keep after a decimal point. After we've added similar options into the generator, several truncations've manifested in the code to adjust intermediate results. This way we've reached the same accurateness as MF has.

What have we learned (reiterated)?

  • A simple problems may have far reaching impact.
  • More precise is not always better. Client often prefers compatible rather than more accurate results.
Saturday, December 5, 2009 1:17:42 PM UTC  #    Comments [0] -
Tips and tricks | xslt
# Thursday, December 3, 2009

Recently we were visiting Ukraine, the capital city, and a town we've come from.

Today's Ukraine makes a twofold impression.

On the one hand it's a childhood places and relatives, an enormous pleasure of meeting university and school friends, a good surprise of meeting university chancellor who was already hoary with age when we were studying.

On the other hand it's already a very different country from what the memory draws. I must be wrong but my impression was that it's a country of traders and endless political battles. It's neither bad nor good but a point of history. Unfortunately we cannot think ourselves now living in Ukraine.

On the question where is our home now, we have the only answer it's in Israel.

Thursday, December 3, 2009 7:32:18 AM UTC  #    Comments [0] -

<February 2010>
Total Posts: 387
This Year: 3
This Month: 0
This Week: 0
Comments: 1370
Locations of visitors to this page
The opinions expressed herein are our own personal opinions and do not represent our employer's view in anyway.

© 2024, Nesterovsky bros
All Content © 2024, Nesterovsky bros
DasBlog theme 'Business' created by Christoph De Baene (delarou)